DISCUSSION OF J. MIYAZAWA

1. Problems for first session

(1) Consider $X=\mathbb{C P}^{2} \backslash$ int D^{4} and the trefoil $K=T_{2,3}$ in its boundary S^{3}. Show that K bounds a disk in X (i.e., it is slice in X).
(2) (Trace embedding lemma) Show that the knot $K \subset S^{3} \subset D^{4}$ is slice (i.e. bounds a smooth disk in D^{4}) if and only if the 0 -trace $X(K)$ (which is the 4 -disk D^{4} together with a 0 -framed 2-handle attached along K) embeds into S^{4}.
(3) Show that a homology class α in $H_{2}\left(S^{2} \times S^{2} ; \mathbb{Z}\right)\left(\right.$ or in $\left.H_{2}\left(\mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}} ; \mathbb{Z}\right)\right)$ with $\alpha \cdot \alpha=0$ can be represented by a sphere.
(4) Show that a smooth complex curve of degree d in $\mathbb{C P}^{2}$ (so $d>0$) has genus $\frac{1}{2}(d-1)(d-2)$.
(5) Show that the map $S U(2) \rightarrow S O(3)$ given by

$$
h \mapsto \phi_{h}(x)=h^{-1} x h
$$

viewing $S U(2)$ as unit quaternions and $x \in \operatorname{Im} \mathbb{H}$ imaginary quaternion.
(6) The map $\operatorname{Spin}^{c}(4)=S U(2) \times S U(2) \times S^{1} /\{ \pm(1,1,1)\} \rightarrow S O(4)$ given by $\left(q_{+}, q_{-}, \lambda\right)$ acting on $\phi \in \mathbb{H}$ by $q_{+} \phi q_{-}^{-}$is the nontrivial S^{1}-bundle over $S O(4)$.

